

EXAME DE INGRESSO - 10. PERÍODO DE 2016 Programa de Pós-Graduação em Engenharia Elétrica

PROVA DE CONHECIMENTOS Sistemas de Potência

Nome: Renan Lima Baima Assinatura:

INSTRUÇÕES

- Preencha seu nome no espaço indicado.
- Você recebeu este caderno contendo vinte e cinco questões de múltipla escolha.
- Leia cuidadosamente todas as questões.
- Responda apenas dezesseis questões à sua escolha.
- Após a resolução das dezesseis questões, indique a alternativa escolhida na tabela (A, B, C, D ou E).
- É permitido o uso de calculadora.
- Não é permitido o uso de celulares, smartphones, etc.
- BOA PROVA!

1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			
21			
22			
23			
24			
25			

ELETRÔNICA DE POTÊNCIA

Para as questões 1 a YY, diferentes conversores são alimentados por uma fonte CA com tensão $v_1(t)$ igual à mostrada na Fig. 1. Para todos os casos $R = 10\Omega$.

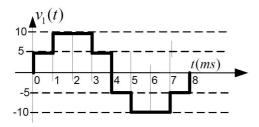


Figura 1: Forma de onda da tensão $v_1(t)$ na fonte CA

Q1 O conversor CA-CA mostrado na Fig. 2 é alimentado pela tensão $v_1(t)$ da Fig. 1. Seus tiristores T1 e T2 são disparados pelos pulsos g_1 e g_2 respectivamente, mostrados na Fig. 3.

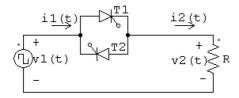


Figura 2: Conversor CA - CA

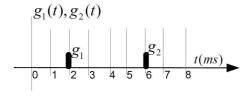


Figura 3: Pulso de gatilhamento de T1 e T2

Os valores da tensão eficaz de $v_2(t)$, do valor médio de $v_2(t)$, da potência ativa fornecida pela fonte $v_1(t)$ e do fator de potência "visto" pela fonte $v_1(t)$ são, respectivamente:

- a) 5,6V; 0,0V; 3,1W e 0,71.
- b) 7,1V; 0,0V; 5,0W e 1,00.
- c) 7,1V; 7,1V; 5,0W e 0,71.
- d) 5.6V; 0.0V; 3.1W e 1.00.
- e) 7,9V; 0,0V; 6,2W e 1,00.
- Q2 Um retificador monofásico não controlado em ponte completa, com filtro L, alimenta uma carga resistiva, conforme mostrado na Fig. 4. O valor do indutor L é suficiente para garantir uma

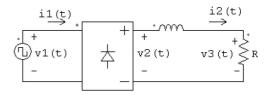


Figura 4: Retificador com filtro L e carga R

ondulação de amplitude desprezível na corrente que o atravessa.

O valor médio de $v_2(t)$, o valor eficaz de $v_2(t)$, o valor médio de $v_3(t)$ e o valor eficaz de $v_3(t)$ valem, respectivamente:

- a) 7,1V; 7,5V; 7,1V e 7,5V.
- b) 7,5V; 7,9V; 7,5V e 7,5V.
- c) 7,5V; 7,9V; 7,5V e 7,9V.
- d) 0,0V; 7,1V; 0,0V e 7,1V.
- e) 7,5V; 7,5V; 7,5V e 7,5V.
- **Q3** Para o retificador da questão 2 o valor médio de $i_1(t)$, o valor eficaz de $i_1(t)$, o valor médio de $i_2(t)$ e a potência ativa fornecida pela fonte $v_1(t)$ são, respectivamente:
 - a) 0,75A; 0,75A; 0,75A e 5,6W.
 - b) 0,00A; 0,71A; 0,71A e 5,0W.
 - c) 0,00A; 0,75A; 0,75A e 5,6W.
 - d) 1,00A; 0,71A; 0,00A e 0,0W.
 - e) 0,00A; 1,00A; 1,00A e 10,0W.

ENERGIA

Q4 Com relação às afirmações a seguir?

- I. Ultrapassar a barreira de 1 TEP/capita de energia consumida parece ser um marco importante para o desenvolvimento e mudança social;
- II. Quanto maior o consumo de energia de um país, maior o desenvolvimento humano; e
- III. A crise de energia na década de 70 teve como uma de suas consequências a busca pelo aumento da eficiência energética e, portanto, um desacoplamento entre o crescimento de energia e o crescimento do PIB nos países desenvolvidos.

Pode-se dizer que

- a) I, II e III estão corretas.
- b) I e III estão corretas, somente.
- c) I e II estão corretas, somente.
- d) II e III estão corretas, somente.
- e) nenhuma delas está correta.
- **Q5** Com relação ao conceito de intensidade energética pode-se afirmar que:
 - a) Mensura comparativamente a intensidade de uso energético em TEP/habitante/país.
 - b) Apresenta o quanto de energia um país consume anualmente em comparação aos demais.
 - c) Representa a energia per capita de um país, região ou setor produtivo.
 - d) Relaciona energia e produto econômico de um país.
 - e) N.D.A. (nenhuma das anteriores).

SISTEMAS DE POTÊNCIA

Enunciado para as Questões 6 e XX: Dois transformadores trifásicos são conectados em paralelo em uma subestação (AT/MT), sendo o primeiro (TR1) com potência de 30MVA e o segundo (TR2) de potência nominal de 20MVA. Ambos apresentam tensões 138kV/13,8kV, resistência e reatância (1%+j5%). O barramento de média tensão (MT) da Subestação alimenta uma carga de (40+j15) MVA. Sabendo-se que a tensão neste barramento vale 0,9 pu (com base na tensão nominal do secundário do transformador), pede-se:

Q6 O módulo da tensão na barra do primário dos transformadores:

- a) 0,926 pu.
- b) 0,910 pu.
- c) 0,874 pu.
- d) 0,880 pu.
- e) 1 pu.
- Q7 Uma subestação de distribuição é ligada no primário em um barramento 138kV no qual a potência de curto circuito trifásico é de j5000MVA. Sabendo-se que a subestação conta com um único transformador trifásico com ligação deltaestrela aterrado, 138kV/13,8kV, potência nominal 20MVA, x1=x0=4%. A potência de curto circuito trifásico e a potência de curto circuito fase terra franco no secundário do transformador valem, respectivamente:
 - a) 400MVA e 450 MVA.
 - b) 454,54MVA e 454,54MVA.
 - c) 4000MVA e 4500MVA.
 - d) 454,54MVA e 468,75MVA.
 - e) 500MVA e 500MVA.

MÁQUINAS ELÉTRICAS E ELETROMAGNETISMO

Q8 Um dispositivo foi construído com material ferromagnético de permeabilidade magnética relativa extremamente elevada, ou seja, para fins práticos $\mu_r \to \infty$. As dimensões estão indicadas na Fig. 5, juntamente com os enrolamentos.

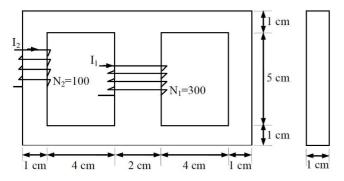


Figura 5: Arranjo do dispositivo

Sabe-se que com $I_1 = 0,5$ A e $I_2 = 0$, a indução magnética na perna central alcança um valor igual a 1T. Determine os valores da indutância própria da bobina um e da mútua indutância entre as bobinas 1 e 2.

- a) 40mH e 40mH.
- b) 120mH e 40mH.
- c) 120mH e 20mH.
- d) 120mH e não há dados para o cálculo de mútua indutância.
- e) 40mH e 120mH.

Enunciado para as questões ?? a ZZ: uma máquina síncrona (MS) é acionada por um motor de indução (MI) e conectada ao barramento, conforme mostrado na Fig. 6.

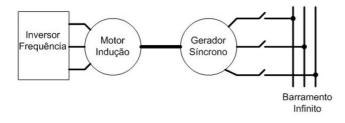


Figura 6: Arranjo da conexão do gerador ao barramento

Os dados nominais das máquinas são:

• MS: 2,5kVA; 220V; 6 pólos; ligação estrela; 60Hz; e $\eta=95\%$.

• MI: 3,0kW; 220V; 4 pólos; ligação delta; 60Hz; $\eta=96\%$; e escorregamento s=5%. Esse motor é alimentado por um inversor de frequência.

As curvas "V" do gerador (MS) são apresentadas na Fig. 7.

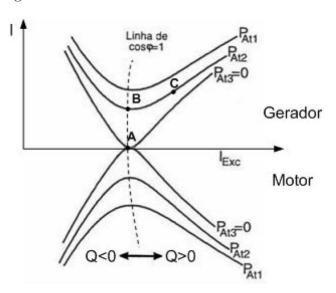


Figura 7: Curvas "V" do gerador

- **Q9** A MS em questão, admitida com circuito magnético linear, tem os resultados de ensaio dados a seguir. Esses ensaios foram obtidos com frequência de 60Hz.
 - Ensaio em vazio: $E_0 = 220V$; $I_{exc} = 1,20A$.
 - Ensaio em curto: $I_{cc} = 20$ A; $I_{exc} = 1,60$ A.

A reatância síncrona, em ohms/fase vale:

- a) 9,5
- b) 8,5
- c) 6.4
- d) 11,0
- e) 19,1

AUTOMAÇÃO INDUSTRIAL

- **Q10** Qual dos componentes abaixo não faz parte de um Controlador Lógico Programável (CLP)?
 - a) Sensor de temperatura.
 - b) Fonte de alimentação.
 - c) Unidade Central de Processamento
 - d) Memória.
 - e) Módulos de entrada e saída.

Q11 Qual das afirmações abaixo está errada?

- a) A linguagem LADDER é uma linguagem de diagrama de contatos.
- b) Sensores indutivos é um tipo de sensor de proximidade.
- c) Protocolos de comunicação são essenciais para distribuir os dados coletados pelos sensores aos sistemas de gestão da automação.
- d) Os sistemas supervisórios são sistemas digitais de monitoração e operação da planta.
- e) Sensores do tipo Hall não existem.